Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability
نویسندگان
چکیده
Colloidal lead halide perovskite nanocrystals (NCs) have recently emerged as versatile photonic sources. Their processing and optoelectronic applications are hampered by the loss of colloidal stability and structural integrity due to the facile desorption of surface capping molecules during isolation and purification. To address this issue, herein, we propose a new ligand capping strategy utilizing common and inexpensive long-chain zwitterionic molecules such as 3-(N,N-dimethyloctadecylammonio)propanesulfonate, resulting in much improved chemical durability. In particular, this class of ligands allows for the isolation of clean NCs with high photoluminescence quantum yields (PL QYs) of above 90% after four rounds of precipitation/redispersion along with much higher overall reaction yields of uniform and colloidal dispersible NCs. Densely packed films of these NCs exhibit high PL QY values and effective charge transport. Consequently, they exhibit photoconductivity and low thresholds for amplified spontaneous emission of 2 μJ cm-2 under femtosecond optical excitation and are suited for efficient light-emitting diodes.
منابع مشابه
Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites
Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spont...
متن کاملFast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)
Postsynthetic chemical transformations of colloidal nanocrystals, such as ion-exchange reactions, provide an avenue to compositional fine-tuning or to otherwise inaccessible materials and morphologies. While cation-exchange is facile and commonplace, anion-exchange reactions have not received substantial deployment. Here we report fast, low-temperature, deliberately partial, or complete anion-e...
متن کاملNanocrystals of Cesium Lead Halide Perovskites (CsPbX₃, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut.
Metal halides perovskites, such as hybrid organic-inorganic CH3NH3PbI3, are newcomer optoelectronic materials that have attracted enormous attention as solution-deposited absorbing layers in solar cells with power conversion efficiencies reaching 20%. Herein we demonstrate a new avenue for halide perovskites by designing highly luminescent perovskite-based colloidal quantum dot materials. We ha...
متن کاملX-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water
Films of colloidal CsPbX3 (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular C═C bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the...
متن کاملLead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals
Lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes (MX(n), where M = Pb, Cd, In, Zn, Fe, Bi, Sb) have been studied as inorganic capping ligands for colloidal nanocrystals. We present the methodology for the surface functionalization via ligand-exchange reactions and the effect on the optical properties of IV-VI, II-VI, and III-V semiconductor nanocrystals. In...
متن کامل